Magic squares of odd order

The are a lot of algorithms to construct magic squares of odd order (n=3,5,7,…). These are the simpliest magic squares, but nevertheless most of these algorithms will construct one and only one single magic square.

You will find more methods to create magic squares of odd order in section pandiagonal squares.

Method Method
Al-Haytham Lozenge-Squares (Sayles)
Bachet de Mézeriac Moschopoulos I
Chan-Mainkar-Narayan-Webster Moschopoulos II
de la Hire (1705) Rallier des Ourmes
de la Hire (Variant: hinduistic) Reiner
de la Hire (Variant: Labosne) De Los Reyes-Pourdarvish-Midha-Das
de la Loubère Sauveur (Marking diagonals)
Frierson Sauveur (Method of indexing)
Liao-Zhu-Wu Zhao Li-hua

All algorithms are described in detail in chapter Magic Squares with Odd Order (german: Ungerader Ordnungen) together with some other PDF documents.

DocumentsDetailed description of algorithms to create magic squares