Moschopoulos II

A nice magic square results from a different method by Moschopoulos, where we move across the square like a knight while playing chess. The second method by Moschopoulos presented here works for all odd squares. If the order n is not divisible by three, even pandiagonal magic squares are created.

Let's take a closer look at the algorithm for order n=5. At the beginning we write the number 1 in the center cell of the top row and make the first four knight moves.

Moschopoulos2 (picture 1)
Moschopoulos2 (picture 2)

Now the 5 is entered and after a further knight move for the number 6 will determine a cell, which is already occupied by the number 1. At this point, the specified move sequence must be interrupted with a special intermediate move, simply by moving down four rows from the last occupied cell.

Moschopoulos2 (picture 3)

You can continue with these moves until the entire square is filled with the numbers 1, 2, 3, … , n2. The resulting magic square in this case is a pandiagonal magic square.

101811422
41225816
23619215
17513219
11247203